

5

Scientific Bulletin of the „Petru Maior” University of Tîrgu Mureş

Vol. 9 (XXVI) no. 1, 2012, ISSN 2285 – 438X (Online), ISSN–L 1841 – 9267

APPLICATIONS OF STRING MINING TECHNIQUES IN

TEXT ANALYSIS

Horaţiu MOCIAN

SociaLook

Belşugului Street, no. 25, 540037, Mureş County

Targu Mures, Romania
1horatiu@socialook.net

ABSTRACT
The focus of this project is on the algorithms and data structures used in string mining

and their applications in bioinformatics, text mining and information retrieval. More

specific, it studies the use of suffix trees and suffix arrays for biological sequence

analysis, and the algorithms used for approximate string matching, both general ones and

specialized ones used in bioinformatics, like the BLAST algorithm and PAM substitution

matrix. Also, an attempt is made to apply these structures and algorithms for text mining

and information retrieval.

Keywords: clustering, bioinformatics, string mining, text analysis, information retrieval

1. Introduction

The field of string mining covers string related

topics like efficient structures for storing strings,

algorithms for exact and approximate pattern

matching, finding repeating patterns in a string, or

methods for calculating distances between two

strings. Before going further into this topic, we define

a string (in computer science) as a contiguous list of

characters. The characters of the string can be of

various types and significance: letters of the English

alphabet, the 4 unitary components of DNA strings

(A, C, G, T), bits (0, 1) and so on. Therefore, string

mining has a large number of applications in

computer science: search functions in word

processors, information retrieval on the web, text

mining, bioinformatics, data compression, spam

filtering, etc.

Although there are well-established structures

and optimal algorithms for storing and searching

strings, which have been around since the 1970s and

1980s [19], research in this area has become very

active again in the last decade. Two of the reasons for

this increase in popularity are identified here: an

exponential growth in the number of documents

available in digital format and on the internet and

rapid advances in computational biology that lead to

availability of larger data sets containing longer

sequences of DNA, RNA or proteins. Algorithms that

were once fast enough to be applied for these tasks

are falling behind. Moreover, the fields of text mining

and biological sequence analysis employ a common

task: approximate string matching. A high throughput

of research activity related to this task was seen in

recent years.

This paper is focused on string mining

applications in two areas: text analysis (information

retrieval, text mining) and bioinformatics (biological

sequence analysis). The specific string related

features in these areas are discussed in this section.

Text analysis and biological sequence analysis

share some common characteristics. First, both work

with large data sets. While biological sequences are

much larger than text documents, the latter are more

numerous. The Protein Data Bank, one of the largest

protein databases contains more than 40000

sequences [8], while the Google index contains more

than 1 billion documents. Henceforth, algorithms in

both areas need to be extremely efficient in time and

space. A more interesting similarity between text

documents and biological sequences is that they both

exhibit a kind of semantics. While text documents,

written in natural languages, reflect the semantic

understanding of these languages, the ”semantics” of

biological sequences are in fact mutations. Nucleic

acids or protein strings can suffer modifications

during replication. These mutations can be: insertion

6

and deletion of elements, repetition of elements, or

substitution of one element with another one. Even if

these mutations occur, the function of the sequence as

a whole remains largely unchanged. Thus, modified

sequences have to be considered when patterns

similar to the original sequence are searched. For this

reason, approximate string matching is essential to

molecular biology. The last type of mutations,

substitutions, are similar to synonyms in natural

languages. This fact suggests that bioinformatics

techniques for approximate string matching can be

used for semantic search and semantic similarity

measures between two documents. However, the

semantics of natural languages are more complex that

the mutations in biological sequences.

Biological sequences and text documents also

have a number of differences. Choosing a unit of

information in a text document (equivalent to a

character in the general string definition) is much

more difficult than in DNA strings, for example. The

simplest approach would be to consider each letter of

the alphabet of a natural language, space and

punctuation mark as string units. A more practical

way is to consider each word as a unit. Alternatively,

ngrams of a specific length can be used. If we want to

take the semantic significance of the text into

consideration, a coarser unit of information can be

used: groups of words, or even entire phrases.

Moreover, the fact that the chosen unit of information

has variable length makes the algorithms more

complex. The semantic model of text documents is

much more complicated than the mutations of

biological sequences. In addition to synonyms, other

constructs like homonyms and hyponyms exist.

Named entities may have multiple identical

identifiers: the financial district of London can be

identified by ”City” or ”Square Mile”, ”New York”

by ”Big Apple”, etc. Last, but not least, different

languages can be used to express the same concepts.

Thus, two words from different languages can have

the exact same meaning, making them similar from a

semantic point of view. All these aspects make need

to be taken into consideration when dealing with text

documents.

Although both text documents and biological

sequences are composed of strings, and exhibit some

common properties, it is somewhat surprising to

observe that, in general, totally different structures

and algorithms are used to store and process these

two categories of strings. Obviously, there are enough

differences between the two to justify using different

approaches, but their core concepts are similar.

Moreover, no study has been made to compare the

performance and accuracy of text analysis tasks using

their traditional structures and the ones used in

bioinformatics. Thus, there is no basis to dismiss any

string mining algorithms when performing IR or Text

Mining tasks. However, the classical document

representation model cannot be aplied to biological

sequence mining. In the next paragraphs, the

dominating structures in each of these two fields will

be overviewed and compared. There are two

important structures used to represent strings in

biological sequence analysis: suffix trees and suffix

arrays. Suffix trees [44] represent each possible suffix

of a string using a directed tree, whose leaf nodes

correspond to a suffix each. Edges are labeled with

substrings, and the concatenated text of all the edges

from the root of the tree to one of the leaf nodes is a

suffix of the represented string. Without going into

any more detail (Section 2 contains a thorough

description of this structure), we can state that the

suffix tree allows fast search of any strings against the

string representing by the tree. Of course, it has a lot

more applications than search (see Section 2). Suffix

arrays have been derived from suffix trees to reduce

memory consumption, and they can be built either

from suffix trees or directly. However, for the

purpose of the introduction, we consider these two

structures equivalent.

The widely accepted model for representing

documents in information retrieval and text mining is

the vector space model (VSM), proposed by Salton

[40]. In this model, documents are represented as a n-

dimensional vector that contains a score for each

word that it contains(n represents the number of

words). The score of a term is influenced positively

by its frequency in the document (TF term

frequency), and negatively by the frequency of the

term in the entire data set (IDF inverse document

frequency). Although this technique gives fairly good

results, it doesn’t maintain the ordering of the words

and it doesn’t make any semantic analysis of the

document.

From these two descriptions, it is obvious that

VSM cannot be used for comparing biological

sequences, where the order of elements is crucial.

However, there is nothing that prevents suffix trees

from representing document. They have been adapted

to hold only words. Moreover, algorithms for

calculating TF and IDF have been developed. But,

except for a few papers [45] [46], suffix trees and

arrays have been hardly applied in text mining or

information retrieval. This project aims to study the

comparative performance of suffix trees and arrays,

on the one hand, and the vector space model on the

other hand, in the context of clustering, a basic text

mining task.

The traditional distance measures used in text

mining and IR, like the Euclidean distance, cosine

similarity, or Jaccard similarity, cannot be used

effectively with suffix trees. Although there is no

problem in employing them, they are based on the

VSM model, and don’t take advantage of the word

ordering maintained by the suffix trees or their

efficient comparison time. As an answer to this

problem we will look at distance measures used in

bioinformatics, or in general for strings, and evaluate

their applicability for document similarity.

A secondary direction of research results by

7

studying the substitution matrices used for protein

sequence searches. They represent the probability of a

mutation of an amino acid into an other. There is a

striking similarity between the amino acid

substitutions and words that can have a similar

senses. Accordingly, the possibility of extending the

concept of substitution matrix to documents, in order

to allow for minimal semantic understanding of the

text. The possibility of applying this concept to

multilingual text mining makes it even more

interesting.

The primary objectives of this thesis is to

analyze the feasibility of using suffix trees and/or

suffix arrays to represent documents in text mining

and information retrieval tasks. The secondary

objective is to study the possibility of adding a

semantic layer in the document representation models

related to primary objective. A third possible

objective is extending the semantic layer mentioned

before into a transparent layer for multilingual text

mining.

Two applications will be developed during the

course of this project to evaluate the proposed

objectives:

1. An application containing at least three

clustering implementations, one based on suffix

arrays, one bused on

suffix arrays with a semantic layer, and

another one based on the vector space model

2. A knowledge extraction application that

detects entities and extracts relationships between

them. The output of this application will be added to

the semantic layer of the clustering application

The motivation for this project stems from a

combination of factors:

 Bioinformatics is a growing field, and

research in this area is very active

 Mainstream Information Retrieval has

remained unchanged in the last decade. Google, the

leading web search engine, has been created in 1998.

Although it suffered numerous changes since then, its

concept remained untouched

 Biological sequences and documents have

several features in common (e.g. large data sets,

”semantic” interpretation) but no study has been

made to evaluate the feasibility of applying data

structures used in bioinformatics to document

representation

After the introduction, the paper will start with

introducing the data structures that will be studied in

this project,

in Section 2. The first part will cover

structures for representing general strings, but which

have been often applied

to computational biology: tries, suffix trees

and suffix arrays. The second part will cover the

vector space model,

and the inverted index, which are omnipresent

in text mining and information retrieval tasks. Section

3 will look

at string comparison methods. The structure of

this section is similar to the previous one, but

bioinformatics

algorithms (BLAST) and structures (PAM)

will be presented separately, because they cannot be

applied to general

string mining tasks. The cosine and Jaccard

similarity features will also be presented in this

section.

Sections 4 and 5 will cover the two

applications that are part of this project: clustering

and relationship extraction.

They follow a similar structure: first, an

overview of the task and the related issues is given,

followed by a

brief presentation of related work, before

detailing our approach, the corpora that will be used

and the evaluation

methodology. The conclusions and future

work will be presented in Section 6.

2. Structures for text representation

Tries, or suffix tries, were proposed by Aho

and Corasick in 1975 [3] to improve bibliographic

search. Keywords are represented using a finite state

automaton which takes a document as input, and

determines whether it contains any of the keywords.

Figure 1 shows the trie representation of the strings

”A”, ”to”, ”tea”, ”ted”, ”ten”, ”i”, ”in”, and ”inn”.

Fig. 1 – Suffix tree

The length of the suffix trie can be limited to

reduce its space consmuption. A trie can be

constructed in O(nk) time, where k represents the

maximum length, using Aho and Corasick’s original

algorithm, but this can be improved to O(n) if a suffix

tree is built first, and then pruned to a maximum

depth of k characters.

Suffix Trees were initially introduced by

Weiner in 1973 [44], and they represent the single

most important data

8

structure for string representation. Their first

big advantage is a construction time O(m), linear in

the size m of the processed string S. After the suffix

tree is constructed, searching for a substring in it

takes O(n) time, where n is the length of the substring

(pattern). The fact that search time is independent of

the length of the string makes suffix trees extremely

useful. They can be used for any number of string-

related tasks, constituting a bridge between exact

string matching and approximate string matching

algorithms [19].

This paragraph describes a suffix tree. Given a

string S[0::n], a suffix is defined as a substring of

form S[i::n]. The suffix tree represents all the possible

suffixes of S in a rooted, directed tree. Edges are

labeled with substrings of S. Each leaf represents a

possible ending of the string, and reading the

characters from edges on the path from the root to a

leaf will give one suffix. Each suffix is represented by

one and only one leaf node. Each internal node has at

least two outgoing edges, and each edge begins with a

different character. Suffix trees are also called

compact tries, because an edge has more than one

character. Figure 2 represents the suffix tree

representation of string ”BANANA$”.

Fig. 2 – Suffix tree

To fulfil the condition that each suffix should

be represented by a leaf node, no suffix must be a

prefix of another suffix. In order to prevent this, a

character uncontained in the string is appended at the

end. This is called the sentinel character, and is

generally denoted by $. The first linear time

construction algorithm was proposed by Weiner in his

initial paper about suffix trees [44]. It was followed

several years later by another linear-time algorithm

with less space consumption, by McCreight [31].

More recently, Ukonnen [43], has devised another

linear time construction algorithm that works better in

practice and is easier to understand.

Edge labels can be represented in two different

ways. If the substring itself is used as a label, then the

space complexity of the algorithm is O(n
2
). However,

this can be easily reduced to O(n) if the start and end

indices of a substring in S are stored.

Although very fast, the high memory

consumption of suffix trees make them infeasible for

large scale applications. In this scenario, suffix arrays

are more efficient.

Suffix arrays were introduced in 1990 by

Manber and Myers [29], as a compact representation

of suffix trees. They report a space consumption

reduction by an order of magnitude. Research in

suffix arrays is currently active, with newer compact

variants being developed in the recent years. Because

they are similar in functionality to suffix trees, they

can be used for many diverse string mining tasks.

As the tree variant, a suffix array represents all

the possible suffixes S[i..n] of a string S[0..n]. The

suffixes, together with their corresponding indices,

are stored in an array, in alphabetical order. Again,

the sentinel character $ is appended so that a suffix

cannot be the prefix of another one. Figure 3

represents the suffix array for the string

”abracadabra”.

Fig. 3 – Suffix array

Search in suffix arrays is based on binary

search and it has logarithmic complexity in the size n

of the represented string. Manber and Myers [29]

provide two basic algorithms for searching, one with

complexity O(mlogn), and another one with

complexity O(m+logn). They show that in practice

these algorithms are competitive with search in suffix

trees.

Suffix arrays can be constructed either

directly, or from suffix trees. The initial direct

construction algorithm by Manber and Myers had

O(nlogn) complexity. This has been improved to O(n)

since then [25]. The additional working space during

construction time has a O(nlogn) complexity. To

improve this, a range of succint data structures have

been developed. A succint data structure has an

additional construction space requirement which is at

9

least close to linear to the size of input. [36] has a

good overview of structures like compact suffix

arrays, compressed suffix arrays or succinct suffix

arrays.

In order to improve the computation efficiency

of different tasks on suffix arrays, additional tables

may be used. In this case, the suffix arrays and the

additional tables are called collectively enhanced

suffix arrays. The array LCP[0..n], where LCP[i] is

the longest common prefix of suffixes s[i] and s[i-1]

is noted as the lcp-array and is often used as a helper

structure for suffix arrays. In [2] it is shown that a

suffix tree can be replaced with an enhanced suffix

array for every algorithm, maintaining the same time

complexity.

In [16] suffix arrays are adapted to hold only

suffixes that start with a word, in the situation where

a string is in

fact a document. The new structure is called

word-suffix array. An optimal algorithm is proposed,

that constructs the suffix array in O(n) time and O(k)

space, where k represents the number of words in the

string.

Suffix arrays have been applied for a wide

range of tasks, like frequency pattern mining,

emerging substrings mining, range minimum queries

(RMQ), or clustering.

3. String Comparison Methods

Classical algorithms for local and global

approximate string matching are covered in this

section. We have also included two algorithms from

bioinformatics, that may be used for text mining, as

well as the similarity measures currently used in IR

and text mining.

There are three types of approximate string

matching problems (they can also be applied to exact

string matching) [1]:

 Global matching (compare entire strings

with roughly the same size)

 Semi-global matching, or pattern matching

(search for appearances of a pattern P in a larger

string S)

 Local matching (find common substrings

of the compared strings)

In text mining, global matching is equivalent

to computing the similarity between two documents,

while semiglobal matching can be used for computing

the frequency of a word or phrase. Although local

matching doesn’t appear to have a direct use, it

constitues the basis for global matching. These

problems have the same uses in bioinformatics, but

the document is replaced by a biological sequence.

Also, global and local approximate matching are

called global sequence alignment and local sequence

alignment, respectively.

The edit distance is often used for computing

the difference between two strings. It counts the

number of insertions of a character into the first

string, the number of deletions of characters from the

first string, and the number of replacements of one

character from the first string to a character from the

second string. A match is also considered an

operation, although its associated cost is 0.

The edit transcript is a string over the alphabet

I, D, R, M (corresponding to the 4 operations) that

describes the transformation from one string to

another. The edit distance (and edit transcript) can be

calculated using dynamic programming. The

algorithm is described in detail in [19] by Gusfield.

The time complexity for calculating the edit distance

is O(nm), while the complexity for creating the edit

transcript is O(n+m).

Global string alignment is similar in concept to

the edit distance. It is often called simply string

alignment. Therefore, if not mentioned otherwise in

this paper, string alignment will refer to global string

alignment. The global alignment of two strings S1

and S2 is obtained by inserting spaces into the strings

until they have equal length and each character or

space from one string coresponds to a character or

space in the other strings. Insertions and deletions are

collectively called indels, because an insertion in one

string corresponds to a deletion in the other one.

Although mathematically edit distance and string

alignment are equivalent, they model different things.

Edit distance shows the transformation steps from one

word to another, while string alignment shows the

final result, disregarding how it was reached. In his

book, Gusfield explains that ”the distinction is that of

process versus product”.

If we assign a score to each operation, then a

score for the alignment can be defined as the sum of

all the operations it contains. Usually, a match has a

score of 1, a substitution is neutral, while an indel has

a negative score of -1. Furthermore, we can define an

optimal string alignment as being the alignment with

the highest score.

The algorithm for determining the optimal

alignment, proposed by Needleman and Wunsch [37]

has a space and time complexity of O(n
2
). However,

space complexity can be reduced to O(n) if only the

last row (or column) is stored.

The task of local aligment of two strings S1

and S2 is to find two substrings a and b, which have

an optimal global alignment score greater than any

other pair of substrings from S1 and S2. Smith and

Waterman [41] have adapted the algorithm for global

alignment for this task. To achieve this, they use

negative scores for both substitions and indels, while

each value of the dynamic matrix must be at least 0.

The algorithm has the same O(n
2
) complexity

in space and time to the one for global alignment. The

entire matrix needs to be stored, because there can be

multiple candidates for substrings with optimal

alignment score. Choosing the best substring when

two or more have an equal score constitutes a topic of

research.

Approximate string matching is heavily used

in bioinformatics, to discover similarities between

10

genes, or protein sequences. The problem was that

protein sequences can suffer mutations. Nucleotides,

represented by four letters of the alphabet: A, C, G, T

for DNA and A, C, G, U for RNA, or amino acids

(represented by 22 four letters of the alphabet) can be

deleted or inserted. Moreover, one nucleotide can

transform into another. At the same time, entire

portions of biological sequences may have no

importance when studying the function of the entire

sequence. All these possibilities need to be

considered when computing the similarity between

two biological sequences.

The same concept of ”mutations” can be

applied for text documents. A document may have a

high similarity with another, but it may contain

several extra words or extra sentences (insertions),

some text may have been cut out (deletions).

Nucleotide transformation is equivalent to words with

same meaning (synonyms) in a text. This is why

approximate string matching algorithms are of direct

interest in text mining and information retrieval. For

this fields, it is actually more useful than exact string

matching algorithms, because it is infeasible to

discover similar documents by comparing them

character by character.

BLAST was introduced in 1990 by Altschul et

al. [4], and it became the preferred tool for searching

biological sequence databases. One of its objectives

was to improve the efficiency of the FASTA

algorithm [28], which was used at the time for

searching through biological sequences. When

introduced, BLAST was reported to be an order of

magnitude faster than FASTA, but newer versions of

the latter reduced the gap significantly. Both

algorithms use heuristics to reduce the number of

possible searches. As BLAST is applied to DNA

string, there is a version of it that runs on protein

sequences, called BLASTP. In addition to BLASTP,

there are other applications in the BLAST family.

In order to explain the BLAST algorithm, its

fundamental objects need to be introduced first. A

segment pair of two strings S1 and S2 is a pair of

equal length substrings aligned without spaces. A

locally maximal segment pair is a segment pair whose

alignment score cannot be improved or maintained

when reducing or extending the strings in either side.

A maximal segment pair (MSP) is a pair with the

maximum score over all possible segment pairs.

For a pattern P that is searched, BLAST finds

all the sequences that have a higher MSP than a

certain threshold. Moreover, sequences that contain a

MSP below the threshold, but have segment pairs of

statistical significance are also returned. The

algorithm for finding sequences with high MSP is

based on the concept of hot spots, taken from

FASTA. BLAST calculates all substrings of the

pattern P having a fixed length, and then searches for

possible matches between these substrings, and any

substrings of S. For DNA strings, the fixed length is

12. Once a hit is located, it is checked, by extension,

if the sequence is contained in a locally maaximal

segment pair. If the alignment score during extension

drops far below the best score found for a smaller

substring, the extension is truncated. However,

because of this optimization, it is not guaranteed that

BLAST finds all sequences having a MSP above the

threshold.

It is difficult to derive a theoretical

efectiveness for BLAST. Although less effective than

optimal local alignment, and a bit less effective than

FASTA in some cases, it is much more faster than the

former, and slightly faster than the latter, and in

general is competitive with both of them. It is

recommended to use both FASTA and BLAST for

searching biological sequences.

PAM matrices were the first important amino

acid substitution matrices. Evolutionary mutations

make it possible for one amino acid to transform into

another one over time. This phenomenon is

represented by the substitution matrix, which stores

the probability of substituting any amino acid by

another one. This matrix is used for protein database

searches. The acronym PAM stands for either ”point

accepted mutation” or ”percent accepted mutation”.

An important issue is calculating the scores of

substitutions. Some suggest that a proper algorithm

for calculating substitution scores is the most

important element of successful protein search.

PAM matrices, proposed by Dayhoff et

al.[15], use PAM units to measure the ”evolutionary

divergence”, or distance, between two sequences.

Two sequences, S1 and S2 are defined as being one

PAM unit divergent if a series of accepted point

mutations, but no insertions or deletions, has

transformed S1 into S2, with an average of one

accepted point-mutation per one-hundred amino

acids. A mutation is considered accepted if it didn’t

change the function of a protein, or the change was

either beneficial or unharmful. Note that a mutation

can be applied to a position multiple times, so two

strings having 1 PAM distance don’t necessarily have

a sequence difference of 1%.

PAM matrices are a series of substition

matrices that represent the expected evolutionary

changes between 2 amino acids. Each PAM matrix

represents the substitution scores for sequences that

differ in a fixed number of PAM unit. Thus, PAM 1 is

used to compare sequences that are 1 PAM units

diverged, PAM 2 for sequences that are 2 PAM units

diverged, and so on. Theoretically, the score for each

pair Ai, Aj of amino acids in the PAM n matrix can

be calculated by gathering many pairs of sequences

that are n PAMs distant from each other, aligning

them, and counting the number of times Ai and Aj

appear in the same position in two different

sequences. This result is then divided by the total

number of pairs. However, in practice is impossible

to align sequences in a way that reflects their

evolutionary changes. In order to construct the

matrices, Dayhoff gathered similar sequences, but

11

only for low PAM numbers, where the changes are

easier to locate, and then applied the theoretical

method. Higher PAM matrices were obtained by

creating a matrix M that represents for each pair of

amino acids the frequency of one being substituted by

another for 1 PAM divergent sequences, and

multiplying matrix M by itself n times (if PAM n is

calculated).

Another substitution matrix is BLOSUM [20],

which is more successful in capturing distant

relationship between sequences. The concept of

substitution matrices, can be readily applied to text

documents, where a similar matrix can store either

synonymity relationships, or co-occurrences, or any

other kind of relationship. However, a performance

issue is raised by the high number of words, which

can easily exceed one hundred thousand, compared to

20 amino acids.

4. Application: Document Clustering

The first application that will be developed as

part of this project is a clustering system. We chose

clustering because it is a representative task in text

mining, and data mining in general. Additionally, We

have experience with clustering systems, having

developed one as a part of a larger text mining project

[14]. Also, the topic of the author’s first Individual

Study Option was surveying distributing clustering

techniques.

Document clustering is one of the most

suitable task for evaluating document representation

models and similarity measures. In this paragraph, I

am comparing it against the classification and

document retrieval tasks. On one hand, not all

classification techniques require direct comparison

between documents, so it might be argued that

computing document similarity is not a representative

sub-task of classification. On the other hand, in

document retrieval the query contains only several

words. Consequently, the comparison between each

document and the query will become a semi-global

approximate string matching problem, instead of a

global one. Another issue with the query is that it is

difficult to define its semantic context, because of the

small number of words it contains. In these

conditions, adding a semantic layer would not be able

to increase accuracy. Therefore, clustering is the most

appropriate task in regard to our requirements.

Several clustering techniques will be

developed as part of this application. All of them will

use the same clustering algorithm. The difference

between the techniques will be the document

representation structure they use, as well as the

similarity measure they employ. The first

implementation, using the vector space model and

cosine similarity measure, will constitute the baseline

of our measurements. It will be followed by another

implementation, that uses suffix arrays to represent

strings, and a different similarity measure, based on a

global approximate string matching algorithm. The

third implementation will also use suffix arrays, but

will add the semantic layer, based on the substitution

matrix concept used for protein sequence

comparisons in computational biology. The semantic

layer will represent synonyms, polysemantic words,

and relationships between named entities (see Section

5 for details).

Clustering, or unsupervised learning, is the

task of grouping together related data objects [22].

Unlike supervised learning, there isn’t a predefined

set of discrete classes to assign the objects to. Instead,

new classes, in this case called clusters, have to be

found. There are a lot of possible definitions for what

a cluster is, but most of them are based on two

properties: objects in the same cluster should be

related to each other, while objects in different

clusters should be different.

Clustering has applications in many fields of

computer science: data mining, statistics, pattern

recognition, bioinformatics or image processing.

While, in general, the same clustering algorithm can

be applied in any of these fields with only slight

modifications, some of the algorithms work better for

certain clustering tasks. Also, in addition to the

algorithm itself, there are other factors that influence

the accuracy of a specific technique: the type of data

that is clustered, the methods used for preprocessing,

or the parameters of the algorithm. The focus of the

application is not on algorithms, but on the

preprocessing of items, and on the similarity

measures used throughout the process.

When applied on a data set composed of text

documents, this learning task is called document

clustering. It has several particularities compared with

the general technique. First, the feature space is high-

dimensional, reaching easily orders of ten thousand or

hundred thousand. In most cases, the features of

documents consist of their words. Almost always,

feature selection is applied: only the highest ranking

words (according to same scoring method) are used

further in the process. Second, the feature distribution

of each document is sparse: only up to several

hundred words are contained in a single document,

which represent roughly around 1% of the total

number of documents. After feature selection is

applied, this value drops even further. Third,

documents have a deep semantic context which

should be taken into account (but often it is not) when

clustering is performed. While two documents may

have a small number of words in common, they can

have the same meaning, provided that many of the

words are synonyms. Another example is the use of

named entities. If two documents contain the same

named entities (companies, people, organizations),

there is a strong relatedness between then, even if the

majority of words don’t match. However, these

situations will be poorly dealt with by a clustering

algorithm if it doesn’t apply some basic semantic

rules.

The algorithms for clustering are numerous

12

and diverse. However, most algorithms fall into two

categories: hierarchical and partitional clustering.

The clustering algorithm chosen for

implementation is called Quality Threshold clustering

[21]. It was originally developed for clustering genes.

In a previous paper [14], the algorithm was

successfully implemented for document clustering.

Thus, it provides another example that algorithms

from bioinformatics can be applied in text mining.

QT clustering exhibits a number of advantages

over the majority of other algorithms:

 It satisfies a quality criteria: the diameter

of a cluster is guaranteed to be over a certain

threshold;

 The number of resulting clusters doesn’t

have to be specified a priori;

 There is no randomness in the algorithm:

each run will have the same results.

Instead of the widely accepted Vector Space

Model, we will use Suffix Arrays [29] for

representing documents. Suffix Arrays have been

applied to text documents by Yamamoto and Church

in [45], where they propose methods for computing

TF and IDF for strings using suffix arrays. Fischer

[16] introduces word suffix arrays, where only words

are stored. Using this structure will allow to

incorporate word ordering into any kind of similarity

computation.

A discussion is worth regarding the chosen

representation unit of suffix arrays. We will probably

try several versions. One of them is to store all the

suffixes, considering the character as the unit of the

string. However, this doesn’t seem to be the best

choice. A more appropriate one is to consider words

as the unit of strings, and store only suffixes

consisting of one or more. Finally, we will investigate

using an even coarser units, like phrases or even

entire paragraphs.

The similarity measure will be in fact a global

sequence aligning algorithm, which will be used to

compare two documents. If two strings don’t appear

in the similarity matrix, they are considered

completely different, from a semantic point of view.

Since their actual spelling presents no interest, they

will be considered completely different (i.e. they have

a similarity of 0.0). However, edit distance with a

small threshold can be used to spot misspellings.

Adding the semantic layer can be done using a

matrix similar in concept to the one representing

possible mutations in biological sequence alignment

(Section 3.2). However, a sparse matrix

implementation will be used, because only a small

percentage of the total number of words will have an

established semantical relatedness. The same matrix

can be used for modelling any kind of relationship. If

two words are synonyms they will receive a score of

1.0. The relatedness score between two entities will

vary from 0.0 to 1.0, where 1.0 are different words or

expressions for the same entities (e.g. ”International

Business Machines”, ”IBM” or ”Big Blue”).

The introduction of the semantic layer brings

an increase in complexity and size of computation.

Note that not only words need to be included in a

semantic similarity matrix, but also different senses

of the words, and groups of words that form

expressions, increase the size of the matrix

considerably. Moreover, a word sense disambiguation

(WSD) classifier will need to be employed in order to

find the sense of ambiguous words (or at least some

of them). In order to help with this task, a part-of-

speech (POS) tagger might also be employed.

There will be two categories of semantic

relationships taken into consideration. First, there are

synonyms and polysemantic word: different words

that have the same sense. These will be replaced by

their WordNet synsets (a group of words having the

same sense). Thus, words with the same sense will be

replaced with a common synset, even if they are

different. Second, relationships between named

entities will be introduced. For this, the output of the

second application (Section 5) will be used.

We have identified at least 3 resources that can

be used for semantic analysis of documents:

WordNet, Wikipedia and SemCor. We will give a

short overview on each of them in this section.

WordNet [33] is a lexical database for English,

developed from scratch. It is the most complete

lexical resource publicly available in a digital format.

It has 3 databases, one for words, one for nouns, and

one for adjectives and verbs, respectively. A

completeWordNet entry consists of a set of synonyms

(called synsets), with a dictionary-like definition, or

gloss, and example uses. In addition to the synonymy

relation described by the synsets, WordNet has the

advantage of more complex relations, like hyponymy.

Wikipedia is an user-powered encyclopaedia.

Articles can be added and edited by everyone, so they

become a collaborative effort. Wikipedia has several

features that makes it attractive for semantic analysis.

First, it is an actively update corpus in the public

domain. Moreover, it is available in more than 200

languages. Although many of them have few articles,

there are over 2.8 million articles in English, with

another 10 languages having between 300,000 and 1

million articles. However, articles in different

languages about the same entity are not aligned, and

they can contain an entirely different content,

making Wikipedia impossible to use as a parallel

corpus. Words with multiple senses have a

disambiguation page, with short definitions for each

sense, that can be used directly by WSD classifiers

for disambiguation. Another interesting thing is that

articles usually provide links to other articles which

are related in one way or another. As most of the

articles are about entities, semantic relationships

between them can be inferred.

SemCor [34] is a corpus developed by

Princeton University, containing 352 texts in English.

Out of these, 186 have all the words fully annotated

(POS tagging, sense tagging), while only the verbs

13

are tagged in the others. It has more than 700,000

words in total. It is a subset of the Brown corpus.

There are two corporas that can be used for

evaluation: RCV1 from Reuters[27] and OHSUMED.

RCV1 was released in 2000, and it contains

about 810,000 Reuters, English Language News

stories, published over the period of one year. The

size of the uncompressed corpus is 2.5 GB.

Representing the document in the vector space model

reduced its size to about 600 MB. The OHSUMED

corpus is 400 megabytes in size containing 348,566

clinically-oriented MEDLINE abstracts covering all

references from 270 medical journals over a five-year

period (1987-1991).

Because these two corpora are untagged, only

internal evaluation measures can be used, like overall

intra-cluster similarity. We are planning to use a

smaller, annotated corpus, in order to use the external

valuation measures: precision, recall and F-measures.

An interesting feature that can be added to the

semantic layer is multilingualism. This can be done

easily if we imagine that words express the same

concepts, even if they are in different languages.

Thus, using a parallel dictionary, relationships

between words from different languages can be

established and added to the semantic similarity

matrix described in Section 2.2. Named entities

usually retain their labels across languages (a notable

exception are geographic names), so they should be

easier to integrate. Thus, the two resources needed for

multilingual clustering are parallel dictionaries and a

WSD Classifier (which might itself need additional

resources). An example of multilingual clustering can

be found in [42]. An example of parallel corpora is

MultiSemCor [6] (English/Italian).

5. Application: Knowledge Extraction

According to the Message Understanding

Conferences (MUC), which pioneered named entity

recognition at the end of the 1980s, named entities are

words, or groups of words denoting names of

persons, companies, organizations, geographical

locations, calendar dates and numerals. The task of a

Named Entity Recognition (NER) system is to

identify and annotate each of the entities of a text

with their files.

Advanced techniques for extracting named

entities are out of the scope of this project. We have

two alternatives for implementing this task:

1. Use existing lists of named entities, and

make comparisons against them for each word in the

document

2. Use an existing package for NER

The first technique is straightforward. The

difficult part is populating the lists. However, data

sets of named entities are readily available. A good

examples is DBPedia [5], which extracts all the

named entities fromWikipedia and organizes them in

a taxonomy. Another database, GeoNames stores all

the geographic locations on the Globe in a multi-tier

taxonomy (e.g. continent includes country, which

includes region, which includes city, etc.). Although a

simplistic technique, it can become very powerful if

comprehensive lists are available. Another advantage

is that any word can be considered a named entity if it

appears on a list. This allows us to extended the

concept to domain-related entity types like: foods,

plants, animals, illnesses, etc. This extension has a

great overlap with another subtask of IE, terminology

extraction.

There are many NER packages providing a

very good accuracy. The best of them have an

accuracy of over 96% [13]. Since human annotators

don’t achieve a 100% accuracy, because of inter-

annotator disagreements, we can say that NER

systems function at human performance levels.

Because of this level of perfection, contributions in

this field are hard to achieve. That is why developing

a separate NER system was not considered necessary.

Two of the most popular NER systems, ANNIE and

Stanford NER, are overviewed in this section.

ANNIE (A Nearly-New IE system) [12] is a

component of the GATE Natural Language

Processing framework, developed at the University of

Sheffield. ANNIE is a ”portable” NER system, that

can be applied in many different scenarios, from

XML structured files to old court documents. We

have previously integrated ANNIE in a text mining

system [14].

Stanford NER [17] is a package that performs

named entity recognition using Gibbs sampling. It

assigns one of three possible classes to an entity:

person, organization or location.

For this section, a broad definition of

relationship extraction is used: finding relationships

between entities. In this context, the term

”relationship” is very loose. Some examples of

relationships are: two cities located in the same

country (or county), two companies competing in a

certain industry, two persons working at the same

company, or a person living in a certain city. Any

kind of interaction between two entities can be

considered relationship. Two entities appearing in the

same document, or a hyperlink in Wikipedia from one

to another also indicate that they might be related. We

will consider several techniques for determining

relationships in this chapter. However, not all of them

can be considered extraction techniques in the sense

of Information Extraction.

The most comprehensive type of Relationship

Extraction, also called Relationship Discovery, or

extracting Scenario Templates, uses NLP techniques

to identify related entities. These techniques also

identify the actual relationship, like merger,

succession event or narcotics smuggling [13]. This

task has been included in information extraction

conferences lik MUC-6 (Message Understanding

Conference) or SensEval-3. However, these

algorithms are tailored for specific domains: for

MUC-6, the set of documents was about changes in

14

executive management personnel. Consequently, they

perform poor on the general domain. Others [39] have

tried to solve this problem.

Another way of determining relationships

between documents is a probabilistic approach.

Calculating the co-occurrences of two entities in a

corpus gives us the probability of appearing together

in a document. If this probability is high enough, then

a relationship between the entities can be inferred.

Although less accurate than the NLP approach, this

technique has the advantage that it doesn’t need any

linguistic-based algorithms or resources (except for

the NER task itself). Additionally, it is language

independent. On the downside, it cannot determine

what kind of relationship exists between entities. A

special case of co-occurrence can be considered

Wikipedia hyperlinks. Each Wikipedia entry has links

to other entries. If the originating and the linked

entries are named entities, we can infer a strong

relationship between entities. This kind of inference

has been use by Mihalcea for word sense

disambiguation [32].

Domain knowledge can also be used to infer

relationships between entities. Comprehensive

databases of geographic locations and relationships

between them are available. Also, databases with

companies contain data like the industries they

activate in, headquarters locations, key personnel or

aliases. Movie databases can be used to establish

between actors, and so on. These kinds of

relationships are straightforward to determine, but

their success is highly dependant on the availability

and quality of the external sources.

The last two techniques will be used in this

project for relationship extraction. Although the NLP-

based techniques for this task, are an active topic of

research and present a lot of opportunities, they are

out of the scope of this project. Developing successful

algorithms in this area can be itself the topic of a

paper. Even though the probabilistic and domain

knowledge approaches cannot be considered

extraction techniques in the sense of Information

Extraction (the information is readily available), we

believe that it is appropriate to list them under this

category.

The implementation of the knowledge

extraction application is discussed separately for each

of its subtasks, as they can use different structures

and algorithms.

The role of the named entity recognition task

is to provide a starting point for the relationship

extraction task. The two alternatives for doing this,

listed in Section 5.3, are to use an external system or

to use lists with entities. If an external system is used,

then no special structure will be required for

representing strings. On the other hand, when using

lists of entities classical string matching algorithms

can be employed on suffix arrays. Lists of named

entities will be compiled from existing databases or

domain terminologies, if specialization is needed.

No matter which technique is used for

relationship extraction (probabilistic or domain

knowledge) suffix arrays can be used for the

implementation. Entity co-occurrences can be

calculated using the algorithm for computing MI

(Mutual Information) scores on suffix arrays

proposed by Yamamoto and Church in [45].

Identifying relationships between entities using

domain knowledge, will involve heavy use of string

matching algorithms.

Two of the corpora that can be used for

information extraction are: DBpedia and GeoNames.

Wikipedia, another important corpus, was presented

for the clustering application.

DBpedia[5] is a knowledge base developed at

Freie Universitat, Berlin. It extracts information about

entities from Wikipedia. It contains more than

213,000 persons, 328,000 places, 36,000 films and

20,000 companies. Labels of the entities and their

attributes are available in 30 languages. It also

provides a multi-domain ontology based on

Wikipedia. It has the advantage as evolving witk

Wikipedia’s growth. DBpedia is based on user

collaboration, so it does not have a strict formal

structure as hand-crafted corpora like WordNet, and

is more prone to inconsistencies. However, its breadth

(covers multiple domains, not one in particular)

makes it a valuable resource.

GeoNames is a database containing

geographic locations from around the world. It has

more than 600 hundred features (each representing a

type of geographical landmark), grouped into 9

categories, including administrative divisions, land

features, water features, roads and railroads, etc. It

also provides an ontology for semantic integration.

The data is accessible through one of its numerous

web services. Each record in the database has more

than a dozen attributes, including its exact positioning

(longitude and latitude), the country in which it is

situated, timezone, elevation, population, etc. The

database is available under the Creative Commons

attributive license.

The external NER systems that will be used

have already been evaluated, so they won’t be

evaluated during this

project. For the list-based technique, annotated

corpora, taken from MUC or SensEval conferences

will be used for

assessing their accuracy, together with the

standard precision, recall and F-measures.

Evaluating the accuracy of relationship

extraction is quite difficult for several reasons. First,

there are few corpora annotated for this task. The

only ones available are the ones from the MUC and

SensEval Conferences. However, these are

specialized for a certain domain, so they cannot be

used to test general systems, or those specialized in

other domains. The lack of properly annotated

corpora is also signalled in [39]. Moreover, it is

impossible to have an objective quality metric, if the

15

concept of relationship is not clearly defined.

However, this is difficult to do when using the

probabilistic approach. Finally, the domain

knowledge approach doesn’t need to be evaluated,

since the relationships are already given and there is

nothing to extract.

A better way to evaluate the knowledge

extraction application is to integrate it with the

clustering application, and measure the improvement

of the latter.

6. Conclusions

The research that was conducted for preparing

this paper have shown that both suffix trees and suffix

arrays have been used for representing documents,

with good results. As examples, suffix trees have

been used for clustering [46], while suffix arrays have

been used for calculating term frequencies and

document frequencies in a corpus [45]. Additionally,

the author’s experience with applying a gene

expression clustering algorithm on documents, shows

that algorithms in bioinformatics can be successfully

applied for text mining and information retrieval.

Moreover, there is no study to contradict this

claim. In fact, there are no comparative studies on the

applicability of computational biology techniques to

text analysis. The main objective of this project is to

conduct a study of this kind.

More conclusions will be drawn after the

applications presented in this paper will be

implemented and experiments reported. If they

succeed, this may open a new direction of research in

document representation models and similarity

measures that will be more appropriate for the

semantic web paradigm than the existing ones. Even

if the experiments will not be successful, the study

will be useful for assessing the strengths and

weaknesses of suffix trees and arrays when

representing documents.

The possible outcomes of this project are one

or more of the following:

1) A thorough evaluation of the advantages

and disadvantages of adapting structures and

algorithms from bioinformatics to text analysis. This

objective will be successfully fulfiled once the

application introduced in Section 4 will be

implemented

2) Development of a better way for

representing documents that takes into account

semantic aspects. The clustering application from

Section 4 will evaluate the fulfilment of this

objective. If two implementations use the same

algorithm, and differ only by the document model

that they use, we can infer that if one of them has a

higher accuracy (F-measure and/or overall similarity)

than the other, it is ”better”.

3) Development of a new semantic similarity

measure to be applied with the new document

representation model. This will be evaluated in the

same way as the previous objective, because the new

similarity measure and the document model will be

packaged together.

4) Development of a language-neutral

document similarity measure. To evaluate this

possible outcome, a separate clustering application

needs to be build, that performs multilingual

clustering. By language-neutral, we understand that

the subset of clusters in one language returned by the

multilingual algorithm would have a similar quality to

the clusters obtained by running a monolingual

algorithm on that language only.

5) Finding a way of integrating named entity

relationships into the semantic document model and

similarity measure. This outcome will be evaluated in

a similar way as the second and the third outcome.

Acknowledgement

This paper has been written as part of

Horatiu's work for the MSc degree in Advanced

Computing at Imperial College London (2008 –

2009). The contents of this paper is based on the MSc

Project Background Paper.

References

[1] Mohamed Abouelhoda and Moustafa Ghanem. To

Appear in Data Mining and Knowledge

Discovery for Scientific Applications, chapter

String Mining in Bioinformatics. Springer

Berlin / Heidelberg, 2009.

[2] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and

Enno Ohlebusch. Replacing suffix trees with

enhanced suffix arrays. J. of Discrete

Algorithms, 2(1):53–86, 2004.

[3] Alfred V. Aho and Margaret J. Corasick. Efficient

string matching: an aid to bibliographic search.

Commun. ACM, 18(6):333–340, 1975.

[4] Stephen F. Altschul, Warren Gish, Webb Miller,

Eugene W. Myers, and David J. Lipmanl. Basic

local alignment search tool. Journal of

Molecular Biology, 215(2):403–410, 1990.

[5] S¨oren Auer, Christian Bizer, Georgi Kobilarov,

Jens Lehmann, Richard Cyganiak, and Zachary

Ives. Dbpedia: A nucleus for a web of open

data. pages 722–735. 2008.

[6] L. Bentivogli and E. Pianta. Exploiting parallel

texts in the creation of multilingual semantically

annotated resources: the multisemcor corpus.

Nat. Lang. Eng., 11(3):247–261, 2005.

[7] Pavel Berkhin. Survey of clustering data mining

techniques. Technical report, 2002.

[8] Helen M. Berman. The Protein Data Bank: a

historical perspective. Acta Crystallographica

Section A, 64(1):88–95, Jan 2008.

[9] Michael W. Berry, Susan T. Dumais, and Gavin

W. O’Brien. Using linear algebra for intelligent

information retrieval. SIAM Rev., 37(4):573–

595, 1995.

[10] Sergey Brin and Lawrence Page. The anatomy of

a large-scale hypertextual web search engine.

16

Computer Networks and ISDN Systems, 30(1-

7):107 – 117, 1998. Proceedings of the Seventh

International World Wide Web Conference.

[11] Krzysztof Cios, Witold Pedrycz, and Roman W.

Swiniarski. Data mining methods for knowledge

discovery. Kluwer Academic Publishers,

Norwell, MA, USA, 1998.

[12] H. Cunningham, D. Maynard, K. Bontcheva, and

V. Tablan. GATE: A framework and graphical

development environment for robust NLP tools

and applications. In Proceedings of the 40th

Anniversary Meeting of the Association for

Computational Linguistics, 2002.

[13] Hamish Cunningham. Information extraction - a

user guide. CoRR, cmp-lg/9702006, 1997.

[14] Ovidiu Dan and Horatiu Mocian. Scalable web

mining with newistic. In Proceedings of

PAKDD Conference 2009, 2009.

[15] M. O. Dayhoff, R. M. Schwartz, and B. C.

Orcutt. A model of evolutionary change in

proteins. In M. O. Dayhoff, editor, Atlas of

Protein Sequence and Structure, pages 345–

352+. 1978.

[16] Paolo Ferrag ina and Johannes Fischer.

Combinatorial Pattern Matching, chapter Suffix

arrays on words, pages 328–339.

[17] Jenny Rose Finkel, Trond Grenager, and

Christopher Manning. Incorporating non-local

information into information extraction systems

by gibbs sampling. In ACL ’05: Proceedings of

the 43rd Annual Meeting on Association for

Computational Linguistics, pages 363–370,

Morristown, NJ, USA, 2005. Association for

Computational Linguistics.

[18] E. Forgy. Cluster analysis of multivariate data:

efficiency versus interpretability of

classifications. Biometrics, 21:768–780, 1965.

[19] D. Gusfield. Algorithms on strings, trees and

sequences. Cambridge University Press,

Cambridge, United Kingdom, 1997.

[20] S. Henikoff and J. G. Henikoff. Amino Acid

Substitution Matrices from Protein Blocks.

Proceedings of the National Academy of

Science, 89:10915–10919, November 1992.

[21] L. Heyer, S. Kruglyak, and S. Yooseph.

Exploring expression data: Identification and

analysis of coexpressed genes. Genome

Research 9, pp. 1106-1115, 1999.

[22] Anil K. Jain and Richard C. Dubes. Algorithms

for clustering data. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1988.

[23] I. T. Jolliffe. Principal component analysis.

Springer Series in Statistics, Berlin: Springer,

1986, 1986.

[24] Rasha Kashef. Cooperative Clustering Model

and Its Applications. PhD thesis, University of

Waterloo, Department of Electrical and

Computer Enginnering, 2008.

[25] Dong Kyue Kim, Jeong Seop Sim, Heejin Park,

and Kunsoo Park. Constructing suffix arrays in

linear time. Journal of Discrete Algorithms, 3(2-

4):126 – 142, 2005. Combinatorial Pattern

Matching (CPM) Special Issue.

[26] R. Krishnapuram, A. Joshi, and Liyu Yi. A fuzzy

relative of the k-medoids algorithm with

application to web document and snippet

clustering. Fuzzy Systems Conference

Proceedings, 1999. FUZZ-IEEE ’99. 1999 IEEE

International, 3:1281–1286 vol.3, 1999.

[27] David D. Lewis, Yiming Yang, Tony G. Rose,

and Fan Li. Rcv1: A new benchmark collection

for text categorization research. J. Mach. Learn.

Res., 5:361–397, 2004.

[28] DJ Lipman and WR Pearson. Rapid and sensitive

protein similarity searches. Science,

227(4693):1435–1441, 1985.

[29] Udi Manber and Gene Myers. Suffix arrays: a

new method for on-line string searches. In

SODA ’90: Proceedings of the first annual

ACM-SIAM symposium on Discrete algorithms,

pages 319–327, Philadelphia, PA, USA, 1990.

Society for Industrial and Applied Mathematics.

[30] Christopher D. Manning, Prabhakar Raghavan,

and Hinrich Schtze. Introduction to Information

Retrieval. Cambridge University Press, New

York, NY, USA, 2008.

[31] Edward M. McCreight. A space-economical

suffix tree construction algorithm. J. ACM,

23(2):262–272, 1976.

[32] Rada Mihalcea. Using Wikipedia for automatic

word sense disambiguation. In Human

Language Technologies 2007: The Conference

of the North American Chapter of the

Association for Computational Linguistics;

Proceedings of the Main Conference, pages

196–203, Rochester, New York, April 2007.

Association for Computational Linguistics.

[33] George A. Miller. Wordnet: a lexical database

for english. Commun. ACM, 38(11):39–41,

1995.

[34] George A. Miller, Claudia Leacock, Randee

Tengi, and Ross T. Bunker. A semantic

concordance. In HLT ’93: Proceedings of the

workshop on Human Language Technology,

pages 303–308, Morristown, NJ, USA, 1993.

Association for Computational Linguistics.

[35] F. Murtagh. A survey of recent advances in

hierarchical clustering algorithms. The

Computer Journal, 26(4):354–359, November

1983.

[36] Gonzalo Navarro and Veli M¨akinen.

Compressed full-text indexes. ACM Comput.

Surv., 39(1):2, 2007.

[37] S B Needleman and C D Wunsch. A. General

method applicable to the search for similarities

in the aminoacid sequence of two proteins.

Journal of Molecular Biology, 48:443–453,

1970.

17

[38] Clark F. Olson. Parallel algorithms for

hierarchical clustering. Parallel Comput.,

21(8):1313–1325, 1995.

[39] Cartic Ramakrishnan, Krys J Kochut, and Amit

P Sheth. A framework for schema-driven

relationship discovery from unstructured text.

Knowledge Creation Diffusion Utilization,

pages 583 – 596, 2006.

[40] G. Salton, A. Wong, and C. S. Yang. A vector

space model for automatic indexing. Commun.

ACM, 18(11):613–620, 1975.

[41] W Smith and M S Waterman. Identiffication of

common molecular subsequences. Journal of

Computational Biology, 147:195–197, 1981.

[42] R. Steinberger, B. Pouliquen, and C. Ignat.

Navigating multilingual news collections using

automatically extracted information. pages 25–

32, 20-23, 2005.

[43] Esko Ukkonen. On-line construction of suffix

trees. Algorithmica, 14(3):249–260, 1995.

[44] Peter Weiner. Linear pattern matching

algorithms. In SWAT ’73: Proceedings of the

14th Annual Symposium on Switching and

Automata Theory (swat 1973), pages 1–11,

Washington, DC, USA, 1973. IEEE Computer

Society.

[45] Mikio Yamamoto and Kenneth W. Church.

Using suffix arrays to compute term frequency

and document frequency for all substrings in a

corpus. Comput. Linguist., 27(1):1–30, 2001.

[46] Oren Zamir and Oren Etzioni. Web document

clustering: a feasibility demonstration. In SIGIR

’98: Proceedings of the 21st annual

international ACM SIGIR conference on

Research and development in information

retrieval, pages 46–54, New York, NY, USA,

1998. ACM.

