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ABSTRACT 
The focus of this project is on the algorithms and data structures used in string mining 

and their applications in bioinformatics, text mining and information retrieval. More 

specific, it studies the use of suffix trees and suffix arrays for biological sequence 

analysis, and the algorithms used for approximate string matching, both general ones and 

specialized ones used in bioinformatics, like the BLAST algorithm and PAM substitution 

matrix. Also, an attempt is made to apply these structures and algorithms for text mining 

and information retrieval. 
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1. Introduction 

The field of string mining covers string related 

topics like efficient structures for storing strings, 

algorithms for exact and approximate pattern 

matching, finding repeating patterns in a string, or 

methods for calculating distances between two 

strings. Before going further into this topic, we define 

a string (in computer science) as a contiguous list of 

characters. The characters of the string can be of 

various types and significance: letters of the English 

alphabet, the 4 unitary components of DNA strings 

(A, C, G, T), bits (0, 1) and so on. Therefore, string 

mining has a large number of applications in 

computer science: search functions in word 

processors, information retrieval on the web, text 

mining, bioinformatics, data compression, spam 

filtering, etc. 

Although there are well-established structures 

and optimal algorithms for storing and searching 

strings, which have been around since the 1970s and 

1980s [19], research in this area has become very 

active again in the last decade. Two of the reasons for 

this increase in popularity are identified here: an 

exponential growth in the number of documents 

available in digital format and on the internet and 

rapid advances in computational biology that lead to 

availability of larger data sets containing longer 

sequences of DNA, RNA or proteins. Algorithms that 

were once fast enough to be applied for these tasks 

are falling behind. Moreover, the fields of text mining 

and biological sequence analysis employ a common 

task: approximate string matching. A high throughput 

of research activity related to this task was seen in 

recent years. 

This paper is focused on string mining 

applications in two areas: text analysis (information 

retrieval, text mining) and bioinformatics (biological 

sequence analysis). The specific string related 

features in these areas are discussed in this section. 

Text analysis and biological sequence analysis 

share some common characteristics. First, both work 

with large data sets. While biological sequences are 

much larger than text documents, the latter are more 

numerous. The Protein Data Bank, one of the largest 

protein databases contains more than 40000 

sequences [8], while the Google index contains more 

than 1 billion documents. Henceforth, algorithms in 

both areas need to be extremely efficient in time and 

space. A more interesting similarity between text 

documents and biological sequences is that they both 

exhibit a kind of semantics. While text documents, 

written in natural languages, reflect the semantic 

understanding of these languages, the ”semantics” of 

biological sequences are in fact mutations. Nucleic 

acids or protein strings can suffer modifications 

during replication. These mutations can be: insertion 
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and deletion of elements, repetition of elements, or 

substitution of one element with another one. Even if 

these mutations occur, the function of the sequence as 

a whole remains largely unchanged. Thus, modified 

sequences have to be considered when patterns 

similar to the original sequence are searched. For this 

reason, approximate string matching is essential to 

molecular biology. The last type of mutations, 

substitutions, are similar to synonyms in natural 

languages. This fact suggests that bioinformatics 

techniques for approximate string matching can be 

used for semantic search and semantic similarity 

measures between two documents. However, the 

semantics of natural languages are more complex that 

the mutations in biological sequences. 

Biological sequences and text documents also 

have a number of differences. Choosing a unit of 

information in a text document (equivalent to a 

character in the general string definition) is much 

more difficult than in DNA strings, for example. The 

simplest approach would be to consider each letter of 

the alphabet of a natural language, space and 

punctuation mark as string units. A more practical 

way is to consider each word as a unit. Alternatively, 

ngrams of a specific length can be used. If we want to 

take the semantic significance of the text into 

consideration, a coarser unit of information can be 

used: groups of words, or even entire phrases. 

Moreover, the fact that the chosen unit of information 

has variable length makes the algorithms more 

complex. The semantic model of text documents is 

much more complicated than the mutations of 

biological sequences. In addition to synonyms, other 

constructs like homonyms and hyponyms exist. 

Named entities may have multiple identical 

identifiers: the financial district of London can be 

identified by ”City” or ”Square Mile”, ”New York” 

by ”Big Apple”, etc. Last, but not least, different 

languages can be used to express the same concepts. 

Thus, two words from different languages can have 

the exact same meaning, making them similar from a 

semantic point of view. All these aspects make need 

to be taken into consideration when dealing with text 

documents. 

Although both text documents and biological 

sequences are composed of strings, and exhibit some 

common properties, it is somewhat surprising to 

observe that, in general, totally different structures 

and algorithms are used to store and process these 

two categories of strings. Obviously, there are enough 

differences between the two to justify using different 

approaches, but their core concepts are similar. 

Moreover, no study has been made to compare the 

performance and accuracy of text analysis tasks using 

their traditional structures and the ones used in 

bioinformatics. Thus, there is no basis to dismiss any 

string mining algorithms when performing IR or Text 

Mining tasks. However, the classical document 

representation model cannot be aplied to biological 

sequence mining. In the next paragraphs, the 

dominating structures in each of these two fields will 

be overviewed and compared. There are two 

important structures used to represent strings in 

biological sequence analysis: suffix trees and suffix 

arrays. Suffix trees [44] represent each possible suffix 

of a string using a directed tree, whose leaf nodes 

correspond to a suffix each. Edges are labeled with 

substrings, and the concatenated text of all the edges 

from the root of the tree to one of the leaf nodes is a 

suffix of the represented string. Without going into 

any more detail (Section 2 contains a thorough 

description of this structure), we can state that the 

suffix tree allows fast search of any strings against the 

string representing by the tree. Of course, it has a lot 

more applications than search (see Section 2). Suffix 

arrays have been derived from suffix trees to reduce 

memory consumption, and they can be built either 

from suffix trees or directly. However, for the 

purpose of the introduction, we consider these two 

structures equivalent. 

The widely accepted model for representing 

documents in information retrieval and text mining is 

the vector space model (VSM), proposed by Salton 

[40]. In this model, documents are represented as a n-

dimensional vector that contains a score for each 

word that it contains(n represents the number of 

words). The score of a term is influenced positively 

by its frequency in the document (TF term 

frequency), and negatively by the frequency of the 

term in the entire data set (IDF inverse document 

frequency). Although this technique gives fairly good 

results, it doesn’t maintain the ordering of the words 

and it doesn’t make any semantic analysis of the 

document. 

From these two descriptions, it is obvious that 

VSM cannot be used for comparing biological 

sequences, where the order of elements is crucial. 

However, there is nothing that prevents suffix trees 

from representing document. They have been adapted 

to hold only words. Moreover, algorithms for 

calculating TF and IDF have been developed. But, 

except for a few papers [45] [46], suffix trees and 

arrays have been hardly applied in text mining or 

information retrieval. This project aims to study the 

comparative performance of suffix trees and arrays, 

on the one hand, and the vector space model on the 

other hand, in the context of clustering, a basic text 

mining task. 

The traditional distance measures used in text 

mining and IR, like the Euclidean distance, cosine 

similarity, or Jaccard similarity, cannot be used 

effectively with suffix trees. Although there is no 

problem in employing them, they are based on the 

VSM model, and don’t take advantage of the word 

ordering maintained by the suffix trees or their 

efficient comparison time. As an answer to this 

problem we will look at distance measures used in 

bioinformatics, or in general for strings, and evaluate 

their applicability for document similarity. 

A secondary direction of research results by 
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studying the substitution matrices used for protein 

sequence searches. They represent the probability of a 

mutation of an amino acid into an other. There is a 

striking similarity between the amino acid 

substitutions and words that can have a similar 

senses. Accordingly, the possibility of extending the 

concept of substitution matrix to documents, in order 

to allow for minimal semantic understanding of the 

text. The possibility of applying this concept to 

multilingual text mining makes it even more 

interesting. 

The primary objectives of this thesis is to 

analyze the feasibility of using suffix trees and/or 

suffix arrays to represent documents in text mining 

and information retrieval tasks. The secondary 

objective is to study the possibility of adding a 

semantic layer in the document representation models 

related to primary objective. A third possible 

objective is extending the semantic layer mentioned 

before into a transparent layer for multilingual text 

mining. 

Two applications will be developed during the 

course of this project to evaluate the proposed 

objectives: 

1. An application containing at least three 

clustering implementations, one based on suffix 

arrays, one bused on 

suffix arrays with a semantic layer, and 

another one based on the vector space model 

2. A knowledge extraction application that 

detects entities and extracts relationships between 

them. The output of this application will be added to 

the semantic layer of the clustering application 

The motivation for this project stems from a 

combination of factors: 

 Bioinformatics is a growing field, and 

research in this area is very active 

 Mainstream Information Retrieval has 

remained unchanged in the last decade. Google, the 

leading web search engine, has been created in 1998. 

Although it suffered numerous changes since then, its 

concept remained untouched 

 Biological sequences and documents have 

several features in common (e.g. large data sets, 

”semantic” interpretation) but no study has been 

made to evaluate the feasibility of applying data 

structures used in bioinformatics to document 

representation 

After the introduction, the paper will start with 

introducing the data structures that will be studied in 

this project, 

in Section 2. The first part will cover 

structures for representing general strings, but which 

have been often applied 

to computational biology: tries, suffix trees 

and suffix arrays. The second part will cover the 

vector space model, 

and the inverted index, which are omnipresent 

in text mining and information retrieval tasks. Section 

3 will look 

at string comparison methods. The structure of 

this section is similar to the previous one, but 

bioinformatics 

algorithms (BLAST) and structures (PAM) 

will be presented separately, because they cannot be 

applied to general 

string mining tasks. The cosine and Jaccard 

similarity features will also be presented in this 

section. 

Sections 4 and 5 will cover the two 

applications that are part of this project: clustering 

and relationship extraction. 

They follow a similar structure: first, an 

overview of the task and the related issues is given, 

followed by a 

brief presentation of related work, before 

detailing our approach, the corpora that will be used 

and the evaluation 

methodology. The conclusions and future 

work will be presented in Section 6. 

 

2. Structures for text representation  

Tries, or suffix tries, were proposed by Aho 

and Corasick in 1975 [3] to improve bibliographic 

search. Keywords are represented using a finite state 

automaton which takes a document as input, and 

determines whether it contains any of the keywords. 

Figure 1 shows the trie representation of the strings 

”A”, ”to”, ”tea”, ”ted”, ”ten”, ”i”, ”in”, and ”inn”. 

 

Fig. 1 – Suffix tree 

 

The length of the suffix trie can be limited to 

reduce its space consmuption. A trie can be 

constructed in O(nk) time, where k represents the 

maximum length, using Aho and Corasick’s original 

algorithm, but this can be improved to O(n) if a suffix 

tree is built first, and then pruned to a maximum 

depth of k characters. 

Suffix Trees were initially introduced by 

Weiner in 1973 [44], and they represent the single 

most important data 
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structure for string representation. Their first 

big advantage is a construction time O(m), linear in 

the size m of the processed string S. After the suffix 

tree is constructed, searching for a substring in it 

takes O(n) time, where n is the length of the substring 

(pattern). The fact that search time is independent of 

the length of the string makes suffix trees extremely 

useful. They can be used for any number of string-

related tasks, constituting a bridge between exact 

string matching and approximate string matching 

algorithms [19]. 

This paragraph describes a suffix tree. Given a 

string S[0::n], a suffix is defined as a substring of 

form S[i::n]. The suffix tree represents all the possible 

suffixes of S in a rooted, directed tree. Edges are 

labeled with substrings of S. Each leaf represents a 

possible ending of the string, and reading the 

characters from edges on the path from the root to a 

leaf will give one suffix. Each suffix is represented by 

one and only one leaf node. Each internal node has at 

least two outgoing edges, and each edge begins with a 

different character. Suffix trees are also called 

compact tries, because an edge has more than one 

character. Figure 2 represents the suffix tree 

representation of string ”BANANA$”. 

 

Fig. 2 – Suffix tree 

 

To fulfil the condition that each suffix should 

be represented by a leaf node, no suffix must be a 

prefix of another suffix. In order to prevent this, a 

character uncontained in the string is appended at the 

end. This is called the sentinel character, and is 

generally denoted by $. The first linear time 

construction algorithm was proposed by Weiner in his 

initial paper about suffix trees [44]. It was followed 

several years later by another linear-time algorithm 

with less space consumption, by McCreight [31]. 

More recently, Ukonnen [43], has devised another 

linear time construction algorithm that works better in 

practice and is easier to understand. 

Edge labels can be represented in two different 

ways. If the substring itself is used as a label, then the 

space complexity of the algorithm is O(n
2
). However, 

this can be easily reduced to O(n) if the start and end 

indices of a substring in S are stored. 

Although very fast, the high memory 

consumption of suffix trees make them infeasible for 

large scale applications. In this scenario, suffix arrays 

are more efficient. 

Suffix arrays were introduced in 1990 by 

Manber and Myers [29], as a compact representation 

of suffix trees. They report a space consumption 

reduction by an order of magnitude. Research in 

suffix arrays is currently active, with newer compact 

variants being developed in the recent years. Because 

they are similar in functionality to suffix trees, they 

can be used for many diverse string mining tasks. 

As the tree variant, a suffix array represents all 

the possible suffixes S[i..n] of a string S[0..n]. The 

suffixes, together with their corresponding indices, 

are stored in an array, in alphabetical order. Again, 

the sentinel character $ is appended so that a suffix 

cannot be the prefix of another one. Figure 3 

represents the suffix array for the string 

”abracadabra”. 

 

Fig. 3 – Suffix array 

 

Search in suffix arrays is based on binary 

search and it has logarithmic complexity in the size n 

of the represented string. Manber and Myers [29] 

provide two basic algorithms for searching, one with 

complexity O(mlogn), and another one with 

complexity O(m+logn). They show that in practice 

these algorithms are competitive with search in suffix 

trees. 

Suffix arrays can be constructed either 

directly, or from suffix trees. The initial direct 

construction algorithm by Manber and Myers had 

O(nlogn) complexity. This has been improved to O(n) 

since then [25]. The additional working space during 

construction time has a O(nlogn) complexity. To 

improve this, a range of succint data structures have 

been developed. A succint data structure has an 

additional construction space requirement which is at 
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least close to linear to the size of input. [36] has a 

good overview of structures like compact suffix 

arrays, compressed suffix arrays or succinct suffix 

arrays. 

In order to improve the computation efficiency 

of different tasks on suffix arrays, additional tables 

may be used. In this case, the suffix arrays and the 

additional tables are called collectively enhanced 

suffix arrays. The array LCP[0..n], where LCP[i] is 

the longest common prefix of suffixes s[i] and s[i-1] 

is noted as the lcp-array and is often used as a helper 

structure for suffix arrays. In [2] it is shown that a 

suffix tree can be replaced with an enhanced suffix 

array for every algorithm, maintaining the same time 

complexity. 

In [16] suffix arrays are adapted to hold only 

suffixes that start with a word, in the situation where 

a string is in 

fact a document. The new structure is called 

word-suffix array. An optimal algorithm is proposed, 

that constructs the suffix array in O(n) time and O(k) 

space, where k represents the number of words in the 

string. 

Suffix arrays have been applied for a wide 

range of tasks, like frequency pattern mining, 

emerging substrings mining, range minimum queries 

(RMQ), or clustering. 

 

3. String Comparison Methods 

Classical algorithms for local and global 

approximate string matching are covered in this 

section. We have also included two algorithms from 

bioinformatics, that may be used for text mining, as 

well as the similarity measures currently used in IR 

and text mining. 

There are three types of approximate string 

matching problems (they can also be applied to exact 

string matching) [1]: 

 Global matching (compare entire strings 

with roughly the same size) 

 Semi-global matching, or pattern matching 

(search for appearances of a pattern P in a larger 

string S) 

 Local matching (find common substrings 

of the compared strings) 

In text mining, global matching is equivalent 

to computing the similarity between two documents, 

while semiglobal matching can be used for computing 

the frequency of a word or phrase. Although local 

matching doesn’t appear to have a direct use, it 

constitues the basis for global matching. These 

problems have the same uses in bioinformatics, but 

the document is replaced by a biological sequence. 

Also, global and local approximate matching are 

called global sequence alignment and local sequence 

alignment, respectively. 

The edit distance is often used for computing 

the difference between two strings. It counts the 

number of insertions of a character into the first 

string, the number of deletions of characters from the 

first string, and the number of replacements of one 

character from the first string to a character from the 

second string. A match is also considered an 

operation, although its associated cost is 0. 

The edit transcript is a string over the alphabet 

I, D, R, M (corresponding to the 4 operations) that 

describes the transformation from one string to 

another. The edit distance (and edit transcript) can be 

calculated using dynamic programming. The 

algorithm is described in detail in [19] by Gusfield. 

The time complexity for calculating the edit distance 

is O(nm), while the complexity for creating the edit 

transcript is O(n+m). 

Global string alignment is similar in concept to 

the edit distance. It is often called simply string 

alignment. Therefore, if not mentioned otherwise in 

this paper, string alignment will refer to global string 

alignment. The global alignment of two strings S1 

and S2 is obtained by inserting spaces into the strings 

until they have equal length and each character or 

space from one string coresponds to a character or 

space in the other strings. Insertions and deletions are 

collectively called indels, because an insertion in one 

string corresponds to a deletion in the other one. 

Although mathematically edit distance and string 

alignment are equivalent, they model different things. 

Edit distance shows the transformation steps from one 

word to another, while string alignment shows the 

final result, disregarding how it was reached. In his 

book, Gusfield explains that ”the distinction is that of 

process versus product”. 

If we assign a score to each operation, then a 

score for the alignment can be defined as the sum of 

all the operations it contains. Usually, a match has a 

score of 1, a substitution is neutral, while an indel has 

a negative score of -1. Furthermore, we can define an 

optimal string alignment as being the alignment with 

the highest score. 

The algorithm for determining the optimal 

alignment, proposed by Needleman and Wunsch [37] 

has a space and time complexity of O(n
2
). However, 

space complexity can be reduced to O(n) if only the 

last row (or column) is stored. 

The task of local aligment of two strings S1 

and S2 is to find two substrings a and b, which have 

an optimal global alignment score greater than any 

other pair of substrings from S1 and S2. Smith and 

Waterman [41] have adapted the algorithm for global 

alignment for this task. To achieve this, they use 

negative scores for both substitions and indels, while 

each value of the dynamic matrix must be at least 0.  

The algorithm has the same O(n
2
) complexity 

in space and time to the one for global alignment. The 

entire matrix needs to be stored, because there can be 

multiple candidates for substrings with optimal 

alignment score. Choosing the best substring when 

two or more have an equal score constitutes a topic of 

research. 

Approximate string matching is heavily used 

in bioinformatics, to discover similarities between 
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genes, or protein sequences. The problem was that 

protein sequences can suffer mutations. Nucleotides, 

represented by four letters of the alphabet: A, C, G, T 

for DNA and A, C, G, U for RNA, or amino acids 

(represented by 22 four letters of the alphabet) can be 

deleted or inserted. Moreover, one nucleotide can 

transform into another. At the same time, entire 

portions of biological sequences may have no 

importance when studying the function of the entire 

sequence. All these possibilities need to be 

considered when computing the similarity between 

two biological sequences. 

The same concept of ”mutations” can be 

applied for text documents. A document may have a 

high similarity with another, but it may contain 

several extra words or extra sentences (insertions), 

some text may have been cut out (deletions). 

Nucleotide transformation is equivalent to words with 

same meaning (synonyms) in a text. This is why 

approximate string matching algorithms are of direct 

interest in text mining and information retrieval. For 

this fields, it is actually more useful than exact string 

matching algorithms, because it is infeasible to 

discover similar documents by comparing them 

character by character. 

BLAST was introduced in 1990 by Altschul et 

al. [4], and it became the preferred tool for searching 

biological sequence databases. One of its objectives 

was to improve the efficiency of the FASTA 

algorithm [28], which was used at the time for 

searching through biological sequences. When 

introduced, BLAST was reported to be an order of 

magnitude faster than FASTA, but newer versions of 

the latter reduced the gap significantly. Both 

algorithms use heuristics to reduce the number of 

possible searches. As BLAST is applied to DNA 

string, there is a version of it that runs on protein 

sequences, called BLASTP. In addition to BLASTP, 

there are other applications in the BLAST family. 

In order to explain the BLAST algorithm, its 

fundamental objects need to be introduced first. A 

segment pair of two strings S1 and S2 is a pair of 

equal length substrings aligned without spaces. A 

locally maximal segment pair is a segment pair whose 

alignment score cannot be improved or maintained 

when reducing or extending the strings in either side. 

A maximal segment pair (MSP) is a pair with the 

maximum score over all possible segment pairs. 

For a pattern P that is searched, BLAST finds 

all the sequences that have a higher MSP than a 

certain threshold. Moreover, sequences that contain a 

MSP below the threshold, but have segment pairs of 

statistical significance are also returned. The 

algorithm for finding sequences with high MSP is 

based on the concept of hot spots, taken from 

FASTA. BLAST calculates all substrings of the 

pattern P having a fixed length, and then searches for 

possible matches between these substrings, and any 

substrings of S. For DNA strings, the fixed length is 

12. Once a hit is located, it is checked, by extension, 

if the sequence is contained in a locally maaximal 

segment pair. If the alignment score during extension 

drops far below the best score found for a smaller 

substring, the extension is truncated. However, 

because of this optimization, it is not guaranteed that 

BLAST finds all sequences having a MSP above the 

threshold. 

It is difficult to derive a theoretical 

efectiveness for BLAST. Although less effective than 

optimal local alignment, and a bit less effective than 

FASTA in some cases, it is much more faster than the 

former, and slightly faster than the latter, and in 

general is competitive with both of them. It is 

recommended to use both FASTA and BLAST for 

searching biological sequences. 

PAM matrices were the first important amino 

acid substitution matrices. Evolutionary mutations 

make it possible for one amino acid to transform into 

another one over time. This phenomenon is 

represented by the substitution matrix, which stores 

the probability of substituting any amino acid by 

another one. This matrix is used for protein database 

searches. The acronym PAM stands for either ”point 

accepted mutation” or ”percent accepted mutation”. 

An important issue is calculating the scores of 

substitutions. Some suggest that a proper algorithm 

for calculating substitution scores is the most 

important element of successful protein search. 

PAM matrices, proposed by Dayhoff et 

al.[15], use PAM units to measure the ”evolutionary 

divergence”, or distance, between two sequences. 

Two sequences, S1 and S2 are defined as being one 

PAM unit divergent if a series of accepted point 

mutations, but no insertions or deletions, has 

transformed S1 into S2, with an average of one 

accepted point-mutation per one-hundred amino 

acids. A mutation is considered accepted if it didn’t 

change the function of a protein, or the change was 

either beneficial or unharmful. Note that a mutation 

can be applied to a position multiple times, so two 

strings having 1 PAM distance don’t necessarily have 

a sequence difference of 1%. 

PAM matrices are a series of substition 

matrices that represent the expected evolutionary 

changes between 2 amino acids. Each PAM matrix 

represents the substitution scores for sequences that 

differ in a fixed number of PAM unit. Thus, PAM 1 is 

used to compare sequences that are 1 PAM units 

diverged, PAM 2 for sequences that are 2 PAM units 

diverged, and so on. Theoretically, the score for each 

pair Ai, Aj of amino acids in the PAM n matrix can 

be calculated by gathering many pairs of sequences 

that are n PAMs distant from each other, aligning 

them, and counting the number of times Ai and Aj 

appear in the same position in two different 

sequences. This result is then divided by the total 

number of pairs. However, in practice is impossible 

to align sequences in a way that reflects their 

evolutionary changes. In order to construct the 

matrices, Dayhoff gathered similar sequences, but 
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only for low PAM numbers, where the changes are 

easier to locate, and then applied the theoretical 

method. Higher PAM matrices were obtained by 

creating a matrix M that represents for each pair of 

amino acids the frequency of one being substituted by 

another for 1 PAM divergent sequences, and 

multiplying matrix M by itself n times (if PAM n is 

calculated). 

Another substitution matrix is BLOSUM [20], 

which is more successful in capturing distant 

relationship between sequences. The concept of 

substitution matrices, can be readily applied to text 

documents, where a similar matrix can store either 

synonymity relationships, or co-occurrences, or any 

other kind of relationship. However, a performance 

issue is raised by the high number of words, which 

can easily exceed one hundred thousand, compared to 

20 amino acids. 

 

4. Application: Document Clustering 

The first application that will be developed as 

part of this project is a clustering system. We chose 

clustering because it is a representative task in text 

mining, and data mining in general. Additionally, We 

have experience with clustering systems, having 

developed one as a part of a larger text mining project 

[14]. Also, the topic of the author’s first Individual 

Study Option was surveying distributing clustering 

techniques. 

Document clustering is one of the most 

suitable task for evaluating document representation 

models and similarity measures. In this paragraph, I 

am comparing it against the classification and 

document retrieval tasks. On one hand, not all 

classification techniques require direct comparison 

between documents, so it might be argued that 

computing document similarity is not a representative 

sub-task of classification. On the other hand, in 

document retrieval the query contains only several 

words. Consequently, the comparison between each 

document and the query will become a semi-global 

approximate string matching problem, instead of a 

global one. Another issue with the query is that it is 

difficult to define its semantic context, because of the 

small number of words it contains. In these 

conditions, adding a semantic layer would not be able 

to increase accuracy. Therefore, clustering is the most 

appropriate task in regard to our requirements. 

Several clustering techniques will be 

developed as part of this application. All of them will 

use the same clustering algorithm. The difference 

between the techniques will be the document 

representation structure they use, as well as the 

similarity measure they employ. The first 

implementation, using the vector space model and 

cosine similarity measure, will constitute the baseline 

of our measurements. It will be followed by another 

implementation, that uses suffix arrays to represent 

strings, and a different similarity measure, based on a 

global approximate string matching algorithm. The 

third implementation will also use suffix arrays, but 

will add the semantic layer, based on the substitution 

matrix concept used for protein sequence 

comparisons in computational biology. The semantic 

layer will represent synonyms, polysemantic words, 

and relationships between named entities (see Section 

5 for details). 

Clustering, or unsupervised learning, is the 

task of grouping together related data objects [22]. 

Unlike supervised learning, there isn’t a predefined 

set of discrete classes to assign the objects to. Instead, 

new classes, in this case called clusters, have to be 

found. There are a lot of possible definitions for what 

a cluster is, but most of them are based on two 

properties: objects in the same cluster should be 

related to each other, while objects in different 

clusters should be different. 

Clustering has applications in many fields of 

computer science: data mining, statistics, pattern 

recognition, bioinformatics or image processing. 

While, in general, the same clustering algorithm can 

be applied in any of these fields with only slight 

modifications, some of the algorithms work better for 

certain clustering tasks. Also, in addition to the 

algorithm itself, there are other factors that influence 

the accuracy of a specific technique: the type of data 

that is clustered, the methods used for preprocessing, 

or the parameters of the algorithm. The focus of the 

application is not on algorithms, but on the 

preprocessing of items, and on the similarity 

measures used throughout the process. 

When applied on a data set composed of text 

documents, this learning task is called document 

clustering. It has several particularities compared with 

the general technique. First, the feature space is high-

dimensional, reaching easily orders of ten thousand or 

hundred thousand. In most cases, the features of 

documents consist of their words. Almost always, 

feature selection is applied: only the highest ranking 

words (according to same scoring method) are used 

further in the process. Second, the feature distribution 

of each document is sparse: only up to several 

hundred words are contained in a single document, 

which represent roughly around 1% of the total 

number of documents. After feature selection is 

applied, this value drops even further. Third, 

documents have a deep semantic context which 

should be taken into account (but often it is not) when 

clustering is performed. While two documents may 

have a small number of words in common, they can 

have the same meaning, provided that many of the 

words are synonyms. Another example is the use of 

named entities. If two documents contain the same 

named entities (companies, people, organizations), 

there is a strong relatedness between then, even if the 

majority of words don’t match. However, these 

situations will be poorly dealt with by a clustering 

algorithm if it doesn’t apply some basic semantic 

rules. 

The algorithms for clustering are numerous 
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and diverse. However, most algorithms fall into two 

categories: hierarchical and partitional clustering. 

The clustering algorithm chosen for 

implementation is called Quality Threshold clustering 

[21]. It was originally developed for clustering genes. 

In a previous paper [14], the algorithm was 

successfully implemented for document clustering. 

Thus, it provides another example that algorithms 

from bioinformatics can be applied in text mining. 

QT clustering exhibits a number of advantages 

over the majority of other algorithms: 

 It satisfies a quality criteria: the diameter 

of a cluster is guaranteed to be over a certain 

threshold; 

 The number of resulting clusters doesn’t 

have to be specified a priori; 

 There is no randomness in the algorithm: 

each run will have the same results. 

Instead of the widely accepted Vector Space 

Model, we will use Suffix Arrays [29] for 

representing documents. Suffix Arrays have been 

applied to text documents by Yamamoto and Church 

in [45], where they propose methods for computing 

TF and IDF for strings using suffix arrays. Fischer 

[16] introduces word suffix arrays, where only words 

are stored. Using this structure will allow to 

incorporate word ordering into any kind of similarity 

computation. 

A discussion is worth regarding the chosen 

representation unit of suffix arrays. We will probably 

try several versions. One of them is to store all the 

suffixes, considering the character as the unit of the 

string. However, this doesn’t seem to be the best 

choice. A more appropriate one is to consider words 

as the unit of strings, and store only suffixes 

consisting of one or more. Finally, we will investigate 

using an even coarser units, like phrases or even 

entire paragraphs. 

The similarity measure will be in fact a global 

sequence aligning algorithm, which will be used to 

compare two documents. If two strings don’t appear 

in the similarity matrix, they are considered 

completely different, from a semantic point of view. 

Since their actual spelling presents no interest, they 

will be considered completely different (i.e. they have 

a similarity of 0.0). However, edit distance with a 

small threshold can be used to spot misspellings. 

Adding the semantic layer can be done using a 

matrix similar in concept to the one representing 

possible mutations in biological sequence alignment 

(Section 3.2). However, a sparse matrix 

implementation will be used, because only a small 

percentage of the total number of words will have an 

established semantical relatedness. The same matrix 

can be used for modelling any kind of relationship. If 

two words are synonyms they will receive a score of 

1.0. The relatedness score between two entities will 

vary from 0.0 to 1.0, where 1.0 are different words or 

expressions for the same entities (e.g. ”International 

Business Machines”, ”IBM” or ”Big Blue”). 

The introduction of the semantic layer brings 

an increase in complexity and size of computation. 

Note that not only words need to be included in a 

semantic similarity matrix, but also different senses 

of the words, and groups of words that form 

expressions, increase the size of the matrix 

considerably. Moreover, a word sense disambiguation 

(WSD) classifier will need to be employed in order to 

find the sense of ambiguous words (or at least some 

of them). In order to help with this task, a part-of-

speech (POS) tagger might also be employed. 

There will be two categories of semantic 

relationships taken into consideration. First, there are 

synonyms and polysemantic word: different words 

that have the same sense. These will be replaced by 

their WordNet synsets (a group of words having the 

same sense). Thus, words with the same sense will be 

replaced with a common synset, even if they are 

different. Second, relationships between named 

entities will be introduced. For this, the output of the 

second application (Section 5) will be used. 

We have identified at least 3 resources that can 

be used for semantic analysis of documents: 

WordNet, Wikipedia and SemCor. We will give a 

short overview on each of them in this section. 

WordNet [33] is a lexical database for English, 

developed from scratch. It is the most complete 

lexical resource publicly available in a digital format. 

It has 3 databases, one for words, one for nouns, and 

one for adjectives and verbs, respectively. A 

completeWordNet entry consists of a set of synonyms 

(called synsets), with a dictionary-like definition, or 

gloss, and example uses. In addition to the synonymy 

relation described by the synsets, WordNet has the 

advantage of more complex relations, like hyponymy. 

Wikipedia is an user-powered encyclopaedia. 

Articles can be added and edited by everyone, so they 

become a collaborative effort. Wikipedia has several 

features that makes it attractive for semantic analysis. 

First, it is an actively update corpus in the public 

domain. Moreover, it is available in more than 200 

languages. Although many of them have few articles, 

there are over 2.8 million articles in English, with 

another 10 languages having between 300,000 and 1 

million articles. However, articles in different 

languages about the same entity are not aligned, and 

they can contain an entirely different content, 

making Wikipedia impossible to use as a parallel 

corpus. Words with multiple senses have a 

disambiguation page, with short definitions for each 

sense, that can be used directly by WSD classifiers 

for disambiguation. Another interesting thing is that 

articles usually provide links to other articles which 

are related in one way or another. As most of the 

articles are about entities, semantic relationships 

between them can be inferred. 

SemCor [34] is a corpus developed by 

Princeton University, containing 352 texts in English. 

Out of these, 186 have all the words fully annotated 

(POS tagging, sense tagging), while only the verbs 
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are tagged in the others. It has more than 700,000 

words in total. It is a subset of the Brown corpus. 

There are two corporas that can be used for 

evaluation: RCV1 from Reuters[27] and OHSUMED. 

RCV1 was released in 2000, and it contains 

about 810,000 Reuters, English Language News 

stories, published over the period of one year. The 

size of the uncompressed corpus is 2.5 GB. 

Representing the document in the vector space model 

reduced its size to about 600 MB. The OHSUMED 

corpus is 400 megabytes in size containing 348,566 

clinically-oriented MEDLINE abstracts covering all 

references from 270 medical journals over a five-year 

period (1987-1991). 

Because these two corpora are untagged, only 

internal evaluation measures can be used, like overall 

intra-cluster similarity. We are planning to use a 

smaller, annotated corpus, in order to use the external 

valuation measures: precision, recall and F-measures. 

An interesting feature that can be added to the 

semantic layer is multilingualism. This can be done 

easily if we imagine that words express the same 

concepts, even if they are in different languages. 

Thus, using a parallel dictionary, relationships 

between words from different languages can be 

established and added to the semantic similarity 

matrix described in Section 2.2. Named entities 

usually retain their labels across languages (a notable 

exception are geographic names), so they should be 

easier to integrate. Thus, the two resources needed for 

multilingual clustering are parallel dictionaries and a 

WSD Classifier (which might itself need additional 

resources). An example of multilingual clustering can 

be found in [42]. An example of parallel corpora is 

MultiSemCor [6] (English/Italian). 

 

5. Application: Knowledge Extraction 

According to the Message Understanding 

Conferences (MUC), which pioneered named entity 

recognition at the end of the 1980s, named entities are 

words, or groups of words denoting names of 

persons, companies, organizations, geographical 

locations, calendar dates and numerals. The task of a 

Named Entity Recognition (NER) system is to 

identify and annotate each of the entities of a text 

with their files. 

Advanced techniques for extracting named 

entities are out of the scope of this project. We have 

two alternatives for implementing this task: 

1. Use existing lists of named entities, and 

make comparisons against them for each word in the 

document 

2. Use an existing package for NER 

The first technique is straightforward. The 

difficult part is populating the lists. However, data 

sets of named entities are readily available. A good 

examples is DBPedia [5], which extracts all the 

named entities fromWikipedia and organizes them in 

a taxonomy. Another database, GeoNames stores all 

the geographic locations on the Globe in a multi-tier 

taxonomy (e.g. continent includes country, which 

includes region, which includes city, etc.). Although a 

simplistic technique, it can become very powerful if 

comprehensive lists are available. Another advantage 

is that any word can be considered a named entity if it 

appears on a list. This allows us to extended the 

concept to domain-related entity types like: foods, 

plants, animals, illnesses, etc. This extension has a 

great overlap with another subtask of IE, terminology 

extraction. 

There are many NER packages providing a 

very good accuracy. The best of them have an 

accuracy of over 96% [13]. Since human annotators 

don’t achieve a 100% accuracy, because of inter-

annotator disagreements, we can say that NER 

systems function at human performance levels. 

Because of this level of perfection, contributions in 

this field are hard to achieve. That is why developing 

a separate NER system was not considered necessary. 

Two of the most popular NER systems, ANNIE and 

Stanford NER, are overviewed in this section. 

ANNIE (A Nearly-New IE system) [12] is a 

component of the GATE Natural Language 

Processing framework, developed at the University of 

Sheffield. ANNIE is a ”portable” NER system, that 

can be applied in many different scenarios, from 

XML structured files to old court documents. We 

have previously integrated ANNIE in a text mining 

system [14]. 

Stanford NER [17] is a package that performs 

named entity recognition using Gibbs sampling. It 

assigns one of three possible classes to an entity: 

person, organization or location. 

For this section, a broad definition of 

relationship extraction is used: finding relationships 

between entities. In this context, the term 

”relationship” is very loose. Some examples of 

relationships are: two cities located in the same 

country (or county), two companies competing in a 

certain industry, two persons working at the same 

company, or a person living in a certain city. Any 

kind of interaction between two entities can be 

considered relationship. Two entities appearing in the 

same document, or a hyperlink in Wikipedia from one 

to another also indicate that they might be related. We 

will consider several techniques for determining 

relationships in this chapter. However, not all of them 

can be considered extraction techniques in the sense 

of Information Extraction. 

The most comprehensive type of Relationship 

Extraction, also called Relationship Discovery, or 

extracting Scenario Templates, uses NLP techniques 

to identify related entities. These techniques also 

identify the actual relationship, like merger, 

succession event or narcotics smuggling [13]. This 

task has been included in information extraction 

conferences lik MUC-6 (Message Understanding 

Conference) or SensEval-3. However, these 

algorithms are tailored for specific domains: for 

MUC-6, the set of documents was about changes in 



14 

executive management personnel. Consequently, they 

perform poor on the general domain. Others [39] have 

tried to solve this problem. 

Another way of determining relationships 

between documents is a probabilistic approach. 

Calculating the co-occurrences of two entities in a 

corpus gives us the probability of appearing together 

in a document. If this probability is high enough, then 

a relationship between the entities can be inferred. 

Although less accurate than the NLP approach, this 

technique has the advantage that it doesn’t need any 

linguistic-based algorithms or resources (except for 

the NER task itself). Additionally, it is language 

independent. On the downside, it cannot determine 

what kind of relationship exists between entities. A 

special case of co-occurrence can be considered 

Wikipedia hyperlinks. Each Wikipedia entry has links 

to other entries. If the originating and the linked 

entries are named entities, we can infer a strong 

relationship between entities. This kind of inference 

has been use by Mihalcea for word sense 

disambiguation [32]. 

Domain knowledge can also be used to infer 

relationships between entities. Comprehensive 

databases of geographic locations and relationships 

between them are available. Also, databases with 

companies contain data like the industries they 

activate in, headquarters locations, key personnel or 

aliases. Movie databases can be used to establish 

between actors, and so on. These kinds of 

relationships are straightforward to determine, but 

their success is highly dependant on the availability 

and quality of the external sources. 

The last two techniques will be used in this 

project for relationship extraction. Although the NLP-

based techniques for this task, are an active topic of 

research and present a lot of opportunities, they are 

out of the scope of this project. Developing successful 

algorithms in this area can be itself the topic of a 

paper. Even though the probabilistic and domain 

knowledge approaches cannot be considered 

extraction techniques in the sense of Information 

Extraction (the information is readily available), we 

believe that it is appropriate to list them under this 

category. 

The implementation of the knowledge 

extraction application is discussed separately for each 

of its subtasks, as they can use different structures 

and algorithms. 

The role of the named entity recognition task 

is to provide a starting point for the relationship 

extraction task. The two alternatives for doing this, 

listed in Section 5.3, are to use an external system or 

to use lists with entities. If an external system is used, 

then no special structure will be required for 

representing strings. On the other hand, when using 

lists of entities classical string matching algorithms 

can be employed on suffix arrays. Lists of named 

entities will be compiled from existing databases or 

domain terminologies, if specialization is needed. 

No matter which technique is used for 

relationship extraction (probabilistic or domain 

knowledge) suffix arrays can be used for the 

implementation. Entity co-occurrences can be 

calculated using the algorithm for computing MI 

(Mutual Information) scores on suffix arrays 

proposed by Yamamoto and Church in [45]. 

Identifying relationships between entities using 

domain knowledge, will involve heavy use of string 

matching algorithms. 

Two of the corpora that can be used for 

information extraction are: DBpedia and GeoNames. 

Wikipedia, another important corpus, was presented 

for the clustering application. 

DBpedia[5] is a knowledge base developed at 

Freie Universitat, Berlin. It extracts information about 

entities from Wikipedia. It contains more than 

213,000 persons, 328,000 places, 36,000 films and 

20,000 companies. Labels of the entities and their 

attributes are available in 30 languages. It also 

provides a multi-domain ontology based on 

Wikipedia. It has the advantage as evolving witk 

Wikipedia’s growth. DBpedia is based on user 

collaboration, so it does not have a strict formal 

structure as hand-crafted corpora like WordNet, and 

is more prone to inconsistencies. However, its breadth 

(covers multiple domains, not one in particular) 

makes it a valuable resource. 

GeoNames is a database containing 

geographic locations from around the world. It has 

more than 600 hundred features (each representing a 

type of geographical landmark), grouped into 9 

categories, including administrative divisions, land 

features, water features, roads and railroads, etc. It 

also provides an ontology for semantic integration. 

The data is accessible through one of its numerous 

web services. Each record in the database has more 

than a dozen attributes, including its exact positioning 

(longitude and latitude), the country in which it is 

situated, timezone, elevation, population, etc. The 

database is available under the Creative Commons 

attributive license. 

The external NER systems that will be used 

have already been evaluated, so they won’t be 

evaluated during this 

project. For the list-based technique, annotated 

corpora, taken from MUC or SensEval conferences 

will be used for 

assessing their accuracy, together with the 

standard precision, recall and F-measures. 

Evaluating the accuracy of relationship 

extraction is quite difficult for several reasons. First, 

there are few corpora annotated for this task. The 

only ones available are the ones from the MUC and 

SensEval Conferences. However, these are 

specialized for a certain domain, so they cannot be 

used to test general systems, or those specialized in 

other domains. The lack of properly annotated 

corpora is also signalled in [39]. Moreover, it is 

impossible to have an objective quality metric, if the 



15 

concept of relationship is not clearly defined. 

However, this is difficult to do when using the 

probabilistic approach. Finally, the domain 

knowledge approach doesn’t need to be evaluated, 

since the relationships are already given and there is 

nothing to extract. 

A better way to evaluate the knowledge 

extraction application is to integrate it with the 

clustering application, and measure the improvement 

of the latter. 

 

6. Conclusions 

The research that was conducted for preparing 

this paper have shown that both suffix trees and suffix 

arrays have been used for representing documents, 

with good results. As examples, suffix trees have 

been used for clustering [46], while suffix arrays have 

been used for calculating term frequencies and 

document frequencies in a corpus [45]. Additionally, 

the author’s experience with applying a gene 

expression clustering algorithm on documents, shows 

that algorithms in bioinformatics can be successfully 

applied for text mining and information retrieval. 

Moreover, there is no study to contradict this 

claim. In fact, there are no comparative studies on the 

applicability of computational biology techniques to 

text analysis. The main objective of this project is to 

conduct a study of this kind. 

More conclusions will be drawn after the 

applications presented in this paper will be 

implemented and experiments reported. If they 

succeed, this may open a new direction of research in 

document representation models and similarity 

measures that will be more appropriate for the 

semantic web paradigm than the existing ones. Even 

if the experiments will not be successful, the study 

will be useful for assessing the strengths and 

weaknesses of suffix trees and arrays when 

representing documents. 

The possible outcomes of this project are one 

or more of the following: 

1) A thorough evaluation of the advantages 

and disadvantages of adapting structures and 

algorithms from bioinformatics to text analysis. This 

objective will be successfully fulfiled once the 

application introduced in Section 4 will be 

implemented 

2) Development of a better way for 

representing documents that takes into account 

semantic aspects. The clustering application from 

Section 4 will evaluate the fulfilment of this 

objective. If two implementations use the same 

algorithm, and differ only by the document model 

that they use, we can infer that if one of them has a 

higher accuracy (F-measure and/or overall similarity) 

than the other, it is ”better”. 

3) Development of a new semantic similarity 

measure to be applied with the new document 

representation model. This will be evaluated in the 

same way as the previous objective, because the new 

similarity measure and the document model will be 

packaged together. 

4) Development of a language-neutral 

document similarity measure. To evaluate this 

possible outcome, a separate clustering application 

needs to be build, that performs multilingual 

clustering. By language-neutral, we understand that 

the subset of clusters in one language returned by the 

multilingual algorithm would have a similar quality to 

the clusters obtained by running a monolingual 

algorithm on that language only. 

5) Finding a way of integrating named entity 

relationships into the semantic document model and 

similarity measure. This outcome will be evaluated in 

a similar way as the second and the third outcome. 
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